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Abstract. Runtime verification is the topic of analyzing execution traces using
formal techniques. It includes monitoring the execution of a system against tem-
poral properties, commonly to detect violations. Not every temporal property is
fully monitorable however: in some cases, the correctness of the execution does
not depend on any finite prefix. We study the connection between monitorabil-
ity and Lamport’s classification of properties to safety and liveness and their dual
classes. We refine the definition of monitorability and provide algorithms to check
which verdicts can be expected, a priori and during runtime verification.

1 Introduction

Runtime verification facilitates the direct monitoring of the execution of a system,
checking it against a formal specification. This can be useful for many applications,
including testing a system before it is deployed, as well as monitoring the system after
deployment. This approach can be applied to improve the reliability of safety critical
and mission critical systems, including safety as well as security aspects, and can more
generally be applied for processing streaming information. Often, the stream of infor-
mation is not a priori limited to a specific length, and the monitored property is supposed
to follow the execution for as long as it is running.

Monitoring properties are often given in linear temporal logic (LTL) [22]. These
properties are traditionally interpreted over infinite execution sequences (the monitored
system keeps emitting events). But for runtime verification to be useful, it is necessary
to be able to provide information after observing only finite execution sequences, also
referred to as prefixes. For example, the property 2p (for some atomic proposition p),
which asserts that p always happens, can be refuted by a runtime monitor if p does
not hold in some observed event. At this point, no matter which way the execution is
extended, the property will not hold, resulting in a negative verdict. However, no finite
prefix of an execution can establish that 2p holds. In a similar way, the property 3p
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cannot be refuted, since p may appear at any time in the future; but once p happens, we
know that the property is satisfied, independent on any continuation, and we can issue a
positive verdict. For the property (2p∨3q) we may not have a verdict at any finite time,
in the case where all the observed events satisfy both p and ¬q. On the other hand, we
may never “lose hope” to have such a verdict, as a later state satisfying q will result in a
positive verdict; at this point we can abandon the monitoring, since the property cannot
be further violated. On the other hand, for the property 23p we can never provide a
verdict in finite time: for whatever happens, p can still appear an infinite number of
times, and we cannot guarantee or refute that this property holds when observing any
finite prefix of an execution. The problem of monitorability of a temporal property was
studied in [5, 10, 25], basically requiring that at any point of monitoring we still have a
possibility to obtain a finite positive or negative verdict.

We refine here the study of LTL monitorability, distinguishing cases where some
verdicts are always possible during runtime, no verdicts are expected, or some verdicts
are possible a priori, but may not be available later, depending on the monitored prefix.
We complete Lamport’s safety and liveness classification of temporal properties with
guarantee, which is the dual of safety, and morbidity, which we define as the dual of
liveness. To complete this classification to cover all possible temporal specifications,
we add another class, which we term quaestio. We study the relationship between this
classification and monitorability. In particular, the safety class includes the properties
whose failure can be detected after a finite prefix, and the liveness properties are those
where one can never conclude a failure after a finite prefix.

We suggest some variants for runtime verification algorithms that take the refined
notions of monitorability into account before and during runtime verification. Equipped
with these algorithms, we can check what kind of verdicts one can expect a priori from
monitoring an execution against a given temporal specification, and can also update
this expectation during runtime when some verdicts are not possible anymore. In addi-
tion, these algorithms can be used to decide whether a given specification is a safety,
guarantee, liveness, or morbidity property.

Related work. Alpern and Schneider [1] formalized Lamport’s definition of safety
and liveness, Sistla [27] showed a PSPACE algorithm for checking safety, and an
EXPSPACE algorithm for checking liveness. Checking liveness was shown to be in
EXPSPACE-complete in [18]. Drissi-Kaitouni and Jard [8], as well as Kupferman and
Vardi [19] studied the problem of monitoring LTL properties for an execution sequence.
Pnueli and Zaks [25] proposed constructing compositional testers for runtime verifica-
tion. They also considered the issue of monitorability of a property, requiring that any
finite prefix can be extended in a finite manner such that a positive or negative verdict
can be reported in finite time. Finally, they provided a tester based algorithm for check-
ing whether an observed finite prefix can be extended in a finite way to obtain a positive
or a negative verdict. Fernandez, Jard, Jéron and Viho supported checking for avail-
ability of future verdicts for a given test objective in the TGV test case generator [11].
Bauer, Leucker and Schallhart defined prefixes that cannot be finitely extended to obtain
a verdict for a temporal specification as ugly prefixes; then they defined a property to be
monitorable if it has no ugly prefixes. They showed that safety and guarantee properties
are monitorable, but there are some other monitorable properties that are not in these
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classes. Diekert and Leucker [7] studied monitorability and its connection to safety and
liveness using topological characterizations. Falcone, Fernandez and Mounier [9] con-
sidered the Manna-Pnueli hierarchy of properties and showed that some of the classes
of this hierarchy have both monitorable and non-monitorable properties.

Contribution. We revisit the classification of properties according to safety, guarantee
and liveness after completing it to cover all the temporal properties. We add new classes
of properties. The first one we call morbidity; it is the dual class to liveness, i.e., a
negation of a liveness property is a morbidity property and vice versa. To complete the
space of temporal properties, we add another class called quaestio.

We provide an alternative definition for these classes that is based on the possible
results one can obtain during runtime monitoring; this depends on whether one can
always/sometimes/never obtain a positive or a negative verdict based on a finite trace.
Then we study a refinement of runtime monitorability with respect to these classes and
their intersections.

We propose an assortment of algorithms for runtime verification, which extend the
classical LTL runtime verification algorithm. These variants allow us to decide a priori
what kind of verdicts are expected from a property, and update the possibilities as the
monitored execution unfolds. Because of the close connection between the discussed
classification and notions of monitorability, they can also be used to identify the class
of a given LTL specification.

Overview of paper. The paper is organized as follows. Section 2 provides some pre-
liminary introductions to selected concepts, including runtime verification and linear
temporal logic. Section 3 presents our refinement of Lamport’s classification of tem-
poral properties. Section 4 introduces algorithms for determining monitorability and
classification of temporal properties. Finally, Section 5 concludes the paper.

2 Preliminaries

2.1 Runtime Verification

Runtime verification (RV) [2, 13] very generally refers to the use of rigorous (formal)
techniques for processing execution traces emitted by a system being observed. The
purpose is, again generally viewed, to evaluate the state of the observed system. Since
only single executions (or collections thereof) are analyzed, RV scales well compared
to more comprehensive formal methods, but of course at the cost of coverage. Nonethe-
less, RV can be useful due to the rigorous methods involved. Note that in runtime veri-
fication one is not concerned with how to obtain various executions, as in e.g. test case
generation. This reflects a focus of attention (research) rather than a judgment of utility
– test case generation is of course of critical importance.

An execution trace is generated by the observed executing system, typically by in-
strumenting the system to generate events when important transitions take place. In-
strumentation can be manual by inserting logging statements in the code, or it can be
automated using instrumentation software, such as e.g. aspect-oriented programming
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frameworks. In the extreme case, an event can represent a complete view of the internal
state of the system. Processing can take place on-line, as the system executes, or off-
line, by processing log files produced by the system. In the case of on-line processing,
observations can be used to control the monitored system.

Processing can take numerous forms. We focus here on specification-based runtime
verification, where an execution trace is checked against a property expressed in a for-
mal (usually temporal) logic. Expressed more formally, assume an observed system S,
and assume further that a finite execution of S up to a certain point is captured as an
execution trace ξ = e1.e2. . . . .en, which is a sequence of observed events. Each event
ei captures a snapshot of S’s execution state. Assume the type E of events; then the RV
problem can be formulated as constructing a program M : E∗→D, which when applied
to the trace ξ, as in M(ξ), returns some data value d ∈ D in a domain D of interest. In
specification-based RV, typically M is generated from a formal specification, given e.g.
as a temporal logic formula, a state machine, or a regular expression, and d is a verdict
in the Boolean domain (d ∈ B), or some extension of the Boolean domain as discussed
in [4], indicating whether the execution trace conforms to the specification.

However, the field should be perceived broadly, e.g. d can be a visualization of the
execution trace, a learned specification (specification mining), statistical information
about the trace, an action to perform on the running system S, etc. The problem can
be even further generalized to computing a result from multiple traces, as e.g. done
in specification learning [24, 15–17] and statistical model checking [21], giving M the
type M : 2E

∗ → D.
That execution trace is often unbounded in length, representing the fact that the

observed system “keeps running”, without a known termination point. Hence it is im-
portant that the monitoring program is capable of producing verdicts based on finite
prefixes of the execution trace observed so far. The remainder of the paper discusses
what kind of verdicts can be produced from finite prefixes given a specific property.

2.2 Linear Temporal Logic

The classical definition of linear temporal logic is based on future operators [22]:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ |(ϕ U ϕ) | ©ϕ

where p is a proposition from a finite set of propositions P, with U standing for until,
and© standing for next-time. One can also write (ϕ∨ψ) instead of ¬(¬ϕ∧¬ψ), (ϕ→
ψ) instead of (¬ϕ∨ψ), 3ϕ (eventually ϕ) instead of (true U ϕ) and 2ϕ (always ϕ)
instead of ¬3¬ϕ.

LTL formulas are interpreted over an infinite sequence of events3 ξ = e0.e1.e2 . . .,
where ei ⊆ P for each i ≥ 0. These are the propositions that hold in that event. We
denote by ξi the suffix ei.ei+1.ei+2 . . . of ξ. LTL semantics is defined as follows:

– ξi |= true.
– ξi |= p iff p ∈ ei.

3 The classical interpretation of LTL is over states [22], but in the context of RV, we monitor a
sequence of events that are reported by the instrumentation.
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– ξi |= ¬ϕ iff not ξi |= ϕ.
– ξi |= (ϕ∧ψ) iff ξi |= ϕ and ξi |= ψ.
– ξi |=©ϕ iff ξi+1 |= ϕ.
– ξi |= (ϕ U ψ) iff for some j ≥ i, ξ j |= ψ, and for all i≤ k < j, ξk |= ϕ.

Then ξ |= ϕ when ξ0 |= ϕ.
An LTL property can be translated into a nondeterministic Büchi automaton [12,

30]. The translation can incur an exponential blowup. This nondeterministic automaton
can be used directly for model checking, but requires determinization [26], e.g., for the
purpose of synthesizing a reactive system from the temporal property. Unfortunately,
determinization results here in additional exponential explosion. This sums up to a dou-
ble exponential blowup of the translation from the LTL property to the deterministic
(Rabin, Street) automaton that accepts the same language. It turns out that we also need
(a different kind of) determinization for runtime verification [19].

Past time LTL (PLTL) is interpreted over finite sequences, looking backwards from
the current event. PLTL has the back mirror operators of LTL’s modal operators.

3 Characterizing Temporal Properties

Safety and liveness temporal properties were defined informally on infinite execution
sequences by Lamport [20] as something bad cannot happen and something good
will happen. These informal definitions were later formalized by Alpern and Schnei-
der [1]. Guarantee properties where used in an orthogonal characterization by Manna
and Pnueli [22]. Guarantee properties are the dual of safety properties, that is, the nega-
tion of a safety property is a guarantee property and vice versa. We add to this picture
morbidity properties, which is the dual class of liveness properties.

safety A property ϕ is a safety property, if for every execution that does not satisfy it,
there is a finite prefix such that completing it in any possible way into an infinite
sequence would not satisfy ϕ.

guarantee (co-safety) A property ϕ is a guarantee property, if for every execution
satisfying it, there is a finite prefix such that completing it in any possible way into
an infinite sequence satisfies ϕ.

liveness A property ϕ is a liveness property if every finite prefix can be extended to
satisfy ϕ.

morbidity (co-liveness) A property ϕ is a morbidity property if every finite prefix can
be extended to violate ϕ.

Online runtime verification of LTL properties inspects finite prefixes of the execution.
Hence, it may sometimes provide only a partial verdict on the satisfaction and violation
of the inspected property [4, 23]. This motivates providing three kinds of verdicts:

failed when the current prefix cannot be extended in any way into an execution that
satisfies the specification,

satisfied when any possible extension of the current prefix satisfies the specification,
and
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undecided when the current prefix can be extended to satisfy the specification but also
extended to satisfy its negation.

Tracing a safety property, we can provide an indication as soon as it fails. Corre-
spondingly, we can report on the satisfaction of a guarantee property as soon as a finite
prefix satisfies it. The only property that is both a safety and a liveness (and a guarantee)
property is true.

Each temporal property is a conjunction of a liveness and a safety property [1]. Due
to the connection between safety and guarantee and between liveness and morbidity, we
immediately obtain that every temporal property is a disjunction of a guarantee and a
morbidity property, as shown by the following argument. Let ϕ be a temporal property.
Since ψ = (η1 ∧η2) for some safety property η1 and some liveness property η2, then
ϕ =¬(η1∧η2) = (¬η1∨¬η2). But ¬η1 is a guarantee property if η1 is safety and ¬η2
is a morbidity property if η2 is liveness. Manna and Pnueli characterized syntactically
the temporal safety properties as 2ϕ, and the guarantee properties as 3ϕ, where ϕ is a
PLTL property.

Safety, guarantee, liveness and morbidity can be seen as characterizing finite mon-
itorability of temporal properties: if a safety property is violated, there will be a fi-
nite prefix witnessing it; on the other hand, for a liveness property, one can never pro-
vide such a finite negative evidence. We suggest the following alternative definitions of
classes of temporal properties.

AFR (safety) Always Finitely Refutable: when the property does not hold on an infinite
execution, refutation can always be identified after a finite prefix.

AFS (guarantee) Always Finitely Satisfiable: when the property is satisfied on an infi-
nite execution, satisfaction can always be identified after a finite prefix.

NFR (liveness) Never Finitely Refutable: Refutation can never be identified after a
finite prefix.

NFS (morbidity) Never Finitely Satisfiable: Satisfaction can never be identified after a
finite prefix.

It is easy to see that the definitions of the classes AFR and safety are the same and
so are those for AFS and guarantee. We will show the correspondence between NFR
and liveness. A liveness property ϕ is defined to satisfy that any finite prefix can be
extended to an execution that satisfies ϕ. The definition of the class NFR only mentions
prefixes of executions that do not satisfy ϕ; but for prefixes of executions that satisfy
ϕ this trivially holds. The correspondence between NFS and morbidity is shown in a
symmetric way.

The above four classes of properties, however, do not cover the entire set of possible
temporal properties, independent of the actual formalism that is used to express them.
The following two classes complete the classification.

SFR Sometimes Finitely Refutable: for some infinite executions that violate the prop-
erty, refutation can be identified after a finite prefix; for other infinite executions
violating the property, this is not the case.

SFS Sometimes Finitely Satisfiable: for some infinite executions that satisfy the prop-
erty, satisfaction can be identified after a finite prefix; for other infinite executions
satisfying the property, this is not the case.
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Let Prop be the set of all properties expressible in some temporal formalism, e.g., LTL
or Büchi automata. Then it is clear that Prop = AFR ∪ SFR ∪ NFR. The only property
that is mutual to two of these classes is true, which holds both for AFR and for NFR. It
also holds that Prop = AFS ∪ SFS ∪ NFS. The only temporal property that is mutual
to two of these classes (AFS and NFS) is false. Every temporal property must belong
then to a class XFR, where X stands for A, S or N, and also to a class XFS, again with
X is A, S or N. We call it the FR/FS classification. The FR/FS classification refines the
classification of properties as safety, guarantee, liveness and morbidity, in the sense of
further dividing these into sub-classes as shown in Figure 1. Specifically, it identifies the
intersections between these classes. Below we give examples for the nine combinations
of XFR and XFS, appearing in clockwise order in Figure 1.

– SFR ∩ NFS: (3p∧2q)
– AFR ∩ NFS: 2p
– AFR ∩ SFS: (p∨2q)
– AFR ∩ AFS:©p
– SFR ∩ AFS: (p∧3q)
– NFR ∩ AFS: 3p
– NFR ∩ SFS: (2p∨3q)
– NFR ∩ NFS: 23p
– SFR ∩ SFS: ((p∨23p)∧©q)

AFR ∩ AFS

Morbidity

Liveness Safety

Guararantee

AFR ∩ NFSNFR ∩ NFS

NFR ∩ AFS

NFR ∩ SFS AFR ∩ SFS

SFR ∩ AFS

SFR ∩ NFS

SFR ∩ SFSQuaestio

Fig. 1: Classification of properties: safety, guarantee, liveness, morbidity and quaestio.

7



The set of all properties Prop is not covered by safety, guarantee, liveness and mor-
bidity. The missing properties are in SFR ∩ SFS. We call the class of such properties
Quaestio (Latin for question).

Observe that for AFR ∩ AFS we gave an example of a property with only the next-
time operator©. We show that for LTL, any property ϕ in AFR ∩ AFS can be written
with only the nexttime and the Boolean operators. To see this, consider a tree whose
edges are labeled with elements from 2P; every finite path from the root down is la-
beled with a prefix of a minimal good sequence4 for ϕ. That is, if a prefix is good then
the path terminate in a leaf node. This is a finitely branching tree, since the number of
successors of each node are at most 2|P|. Assume that this tree has an infinite path. This
path must satisfy ϕ, as, being a safety property, if this path does not satisfy ϕ, it has a
bad prefix, which cannot be extended to satisfy ϕ. So assume that this path satisfies ϕ.
But ϕ is also a guarantee property, hence it must have a finite good prefix. But according
to the construction, a good prefix leads to a leaf node and is not extended in the tree,
contradicting the assumption that the tree has an infinite path. Since the tree is finite, it
is easy to see that one can express ϕ in LTL based on the finitely many good paths in the
tree using© and the Boolean operators5. The converse also holds: any property that is
expressible in this way corresponds to such a finite tree, and thus is in the intersection
of a safety and liveness.

4 Monitorability

4.1 Defining Monitorability

Bauer, Leucker and Schallhart [5] define three categories of prefixes of elements from
2P.

– A good prefix is one where all its extensions (infinite sequences of elements from
2P) satisfy the monitored property ϕ.

– A bad prefix is one where none of its infinite extensions satisfies ϕ.
– An ugly prefix cannot be extended into a good or a bad prefix.

When identifying a good or a bad finite prefix, we are done tracing the execution and
can announce that the monitored property is satisfied or failed, respectively. After an
ugly prefix, satisfaction or refutation of ϕ depends on the entire infinite execution, and
cannot be determined in finite time. Note that a property has a good prefix if it is not a
morbidity property, and a bad prefix if it is not a liveness property.

Monitorability of a property ϕ is defined in [5] as the lack of ugly prefixes for the
property ϕ. This definition is consistent with [25].

Ugly prefixes cannot occur in an execution satisfying a safety property [5]. Suppose
by contradiction that there is an ugly prefix σ for a safety property ϕ. Note that if a prefix
is ugly, it cannot have a good or a bad prefix. Now extending an ugly prefix σ in any way

4 A finite extension of a good (bad or ugly) prefix remains good (bad or ugly, respectively).
5 One can also use other operators to express the same property, e.g., by adding a trivial disjunct,

as in (ϕ∨ (2p∧3¬p)).
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into an execution that does not satisfy a safety property ϕ entails that there must be a bad
(finite) prefix extending σ, a contradiction to σ being ugly. So, any infinite extension
of σ must satisfy ϕ. But then σ itself must be a good prefix, a contradiction again to
σ being ugly. Thus, every safety property is monitorable. Because guarantee properties
are the negations of safety properties, one obtains using a symmetric argument that
every guarantee property is also monitorable.

4.2 Runtime Verification Algorithms for Monitorability

We present four algorithms. The first one is a classical algorithm for runtime verification
of LTL (or Büchi automata) properties. The second algorithm can be used to check
during run time what kind of verdicts can still be produced given the current prefix.
The third algorithm can be used to check whether the property is monitorable, and also
be used under the refinement of monitorability that we present in the next section. The
fourth algorithm can be used to check the class of a given temporal property under the
extension of Lamport’s safety/liveness characterization given in this paper.

Algorithm 1: Monitoring sequences using automata

Kupferman and Vardi [19] provide an algorithm for detecting good and bad prefixes.
For good prefixes, start by constructing a Büchi automaton A¬ϕ for ¬ϕ, e.g., using
the translation in [12]. Note that this automaton is not necessarily deterministic [29].
States of A¬ϕ, from which one cannot reach a cycle that contains an accepting state,
are deleted. Checking for a positive verdict for ϕ, one keeps for each monitored prefix
the set of states that A¬ϕ would be after observing that input. One starts with the set of
initial states of the automaton A¬ϕ. Given the current set of successors S and an event
e ∈ 2P, the next set of successors S′ is set to the successors of the states in S according
to the transition relation ∆ of A¬ϕ. That is, S′ = {s′|s ∈ S∧ (s,e,s′) ∈ ∆}. Reaching the
empty set of states, the monitored sequence is good, and the property must hold since
the current prefix cannot be completed into an infinite execution satisfying ¬ϕ.

This is basically a subset construction for a deterministic automaton Bϕ, whose ini-
tial state is the set of initial states of A¬ϕ, accepting state is the empty set, and transition
relation as described above. The size of this automaton is O(22|P|), resulting in dou-
ble exponential explosion from the size of the checked LTL property. But in fact, we
do not need to construct the entire automaton Bϕ in advance, and can avoid the dou-
ble exponential explosion by calculating its current state on-the-fly, while performing
runtime verification. Thus, the incremental processing per each event is exponential in
the size of the checked LTL property. Unfortunately, a single exponential explosion is
unavoidable [19].

Checking for a failed verdict for ϕ is done with a symmetric construction, translating
ϕ into a Büchi automaton Aϕ and then the deterministic automaton B¬ϕ (or calculating
its states on-the-fly) using a subset construction as above. Note that A¬ϕ is used to con-
struct Bϕ and Aϕ is used to construct B¬ϕ. Runtime verification of ϕ uses both automata
for the monitored input, reporting a failed verdict if B¬ϕ reaches an accepting state, a
satisfied verdict if Bϕ reaches an accepting state, and an undecided verdict otherwise.
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The algorithm guarantees to report a positive or negative verdict on the minimal good
or bad prefix that is observed.

Algorithm 2: Checking availability of future verdicts

We alter the above runtime verification algorithm to check whether positive or negative
verdicts can still be obtained after the current monitored prefix at runtime. Applying
DFS on Bϕ, we search for states from which one cannot reach the accepting state. Then
we replace these states with a single state ⊥ with a self loop, obtaining the automaton
Cϕ. Reaching ⊥, after monitoring a finite prefix σ with Cϕ happens exactly when we
will not have a good prefix anymore. This means that after σ, a satisfied verdict cannot
be issued anymore for ϕ.

Similarly, we perform BFS on B¬ϕ to find all the states in which the accepting state
is not reachable, then replace them by a single state > with a self loop, obtaining C¬ϕ.
Reaching > after monitoring a prefix means that we will not be able again to have a
bad prefix, hence a failed verdict cannot be issued anymore for ϕ. There is no point in
continuing the monitoring if we reach the pair of states (⊥,>), since there is no further
information, positive or negative, that will be later given by the runtime verification.
This happens when the currently monitored prefix is ugly.

We can perform runtime verification while updating the state of both automata, Cϕ

and C¬ϕ on-the-fly, upon each input event. However, we need to be able to predict if,
from the current state, an accepting state is not reachable. While this can be done in
space polynomial in the size of Cϕ and C¬ϕ, it makes an incremental calculation whose
time complexity is doubly exponential in the size of ϕ, as is the algorithm for that by
Pnueli and Zaks [25]. This is hardly a reasonable complexity for the incremental calcu-
lation performed between successive monitored events for an on-line algorithm. Hence,
a pre-calculation of these two automata before the monitoring starts is preferable, leav-
ing the incremental complexity exponential in ϕ, as in Algorithm 1.

Algorithm 3: Checking monitorability

A small variant on the construction of Cϕ and C¬ϕ allows checking if a property is mon-
itorable. The algorithm is simple: construct the product Cϕ×C¬ϕ and check whether the
state (⊥, >) is reachable. If so, the property is non-monitorable, since there is a prefix
that will transfer the product automaton to this state and thus it is ugly. It is not suffi-
cient to check separately that Cϕ can reach > and that C¬ϕ can reach ⊥. In the property
(¬(p∧ r)∧ ((¬pU(r∧3q))∨ (¬rU(p∧2q)))): both ⊥ and > can be reached, sepa-
rately, depending on which of the predicates r or p happens first. But in either case, there
is still a possibility for a good or a bad extension, hence it is a monitorable property.

If the automaton Cϕ×C¬ϕ consists of only a single state (⊥,>), then there is no
information whatsoever that we can obtain from monitoring the property.

The above algorithm is simple enough to construct, however its complexity is dou-
bly exponential in the size of the given LTL property. This may not be a problem, as the
algorithm is performed off-line and the LTL specifications are often quite short.
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We show that checking monitorability is in EXPSPACE-complete. The upper bound
is achieved by a binary search version of this algorithm6. For the lower bound we show
a reduction from checking if a property is (not) a liveness property, a problem known to
be in EXPSPACE-complete [27, 18].

– We first neutralize bad prefixes. Now, when ψ is satisfiable, then 3ψ is monitorable
(specifically, any prefix can be completed into a good prefix) iff ψ has a good prefix.

– Checking satisfiability of a property ψ is in PSPACE-complete [28]7.
– ψ has a good prefix iff ψ is not a morbidity property, i.e., if ϕ =¬ψ is not a liveness

property.
– Now, ϕ is not a liveness property iff either ϕ is valid or 3¬ϕ is monitorable.

Algorithm 4: Identifying the class of a property

We can identify the classes of properties AFS (guarantee), SFS, NFS (morbidity), AFR
(safety), SFR and NFR (liveness) for any given temporal property. Thus, we can also
identify if a property is in an intersection of two of these classes.

For the classes AFS, SFS and NFS, we reverse acceptance in Cϕ, i.e., all states are
accepting except for the empty state, obtaining Ĉϕ. We take now the product Ĉϕ×Aϕ

and check its emptiness. We can apply a procedure that performs model checking with
the property ϕ and the state space of Ĉϕ, see [6]. The language (accepted sequences) of
Ĉϕ×Aϕ consists exactly of the executions that satisfy the property ϕ and do not have a
good prefix. For such executions it is never sufficient to observe a finite prefix in order
to decide that the property is satisfied. We apply a similar construction for AFR, SFR,
NFR, removing the accepting state from C¬ϕ to obtain D¬ϕ, and taking the product
Ĉ¬ϕ×A¬ϕ.

We then have the following conditions for identifying the different classes:

AFR (safety) Ĉ¬ϕ×A¬ϕ = /0.
Because in this case, executions satisfying ¬ϕ, i.e., not satisfying ϕ, cannot avoid
having a bad state.

NFR (liveness) The automaton C¬ϕ consists of a single state >.
Because the automaton C¬ϕ consists of a single state > exactly when we will never
observe a bad prefix.

SFR Ĉ¬ϕ×A¬ϕ 6= /0 and C¬ϕ does not consist of a single state >.
Because in this case, there is an execution that avoids having any bad state, but
there are still prefixes that are bad.

AFS (guarantee) Ĉϕ×Aϕ = /0.
Because in this case, executions satisfying ϕ cannot avoid having a good state.

NFS (morbidity) The automaton Cϕ consists of a single state ⊥.
Because the automaton Cϕ consists of a single state ⊥ exactly when we can never
observe a good prefix.

6 To show that a property is not monitorable, one needs to guess a state of Bϕ×B¬ϕ and check
that (1) it is reachable, and (2) one cannot reach from it an empty component, both for Bϕ and
for B¬ϕ. (There is no need to construct Cϕ or C¬ϕ.)

7 Proving that liveness was PSPACE-hard was shown in [3].
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SFS: Ĉϕ×Aϕ 6= /0 and Cϕ does not consist of a single state ⊥.
Because in this case, there is an execution that avoids having any good state, but
there are still prefixes that are good.

For a more efficient algorithm for checking if an LTL formula is a safety (AFR)
see [27]. There, an algorithm, based on a binary search on the construction of Aϕ and
A¬ϕ is presented. That algorithm is polynomial space in the size of the property ϕ.
Hence the problem of checking safety is in PSPACE. A lower bound, showing that
the problem is in PSPACE-complete is also given in [27]: one can check whether ϕ is
valid (a problem known to be in PSPACE-complete) exactly when ϕ∨3p is a safety
property, where p is a proposition that does not appear in ϕ. Thus, the same result
applies to checking if an LTL formula is a guarantee property.

Checking liveness (NFR) was shown to be in EXPSPACE-complete in [18]. Thus,
checking that a property is in SFR is also in EXPSPACE-complete, since SFR com-
plements AFR ∪ NFR, hence is equivalent to checking that the property is neither
safety, nor liveness. For the same reasons, these complexity results also apply to the
dual classes: by checking the negation of the given property, we have that guarantee
(AFS) is in PSPACE-complete, and that morbidity (NFS) and SFS are in EXPSPACE-
complete. This agrees with the complexity of the binary search based algorithms given
above.

4.3 Refining monitorability

We first look at the relationship between the above classification of properties and mon-
itorability. Any property that is in AFR (safety) or in AFS (guarantee) is monitorable
as identified in [5, 10]. A property that is NFR ∩ NFS is non-monitorable. In fact no
verdict is ever expected on any sequence that is monitored against such a property. This
leaves the three classes SFR ∩ SFS, SFR ∩ NFS and NFR ∩ SFS, for which some
properties are monitorable and others are not. This is demonstrated in the following
table.

Class monitorable example non-monitorable example
SFR ∩ SFS ((3r∨23p)∧©q) ((p∨23p)∧©q)
SFR ∩ NFS (3p∧2q) (23p∧©q)
NFR ∩ SFS (2p∨3q) (23p∨©q)

We propose that RV can still be applied for non-monitorable properties if initially
some verdicts can be made. We refine the definition of monitorability into the following
categories:

– A property is monitorable if it cannot have an ugly prefix. This corresponds to
the definition of monitorability in [5, 25]. Safety and guarantee properties are
universally monitorable. But as demonstrated above, some of the properties in
SFR ∩ SFS, SFR ∩ NFS and NFR ∩ SFS are also monitorable.
Checking monitorability can be done using Algorithm 3. In Figure 2, the light gray
areas correspond to properties that are monitorable.
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– A property has zero monitoring information if there is no information that can be
obtained by monitoring it any finite amount of time. The properties in the intersec-
tion of liveness and morbidity are those that have zero monitoring information. The
black area in Figure 2 correspond to properties with zero monitoring information.
Checking that a property has zero monitoring information can be done by applying
algorithm 3 (or Algorithm 4 for checking that the property is both in NFR and in
NFS).

– A property is weakly monitorable if there exist ugly prefixes, but not all the finite
prefixes are ugly. In this case, there is still information that we can obtain by mon-
itoring it, but at times, we may observe an ugly prefix, from which no interesting
information can be concluded in finite amount of time.
Algorithm 3 can be used to check that a property is non-monitorable, yet also not
in zero monitoring information. In this case, instead of using Algorithm 1 for per-
forming the runtime verification, one can use Algorithm 2 to also check whether
some verdict is still possible for the current prefix, abandoning the runtime verifica-
tion when this is not the case. The dark gray areas in Figure 2 represent the weakly
monitorable properties.

Consider the property (p∨ (¬q U (p∧23r))). This property is in quaestio. It is
non-monitorable, as demonstrated by the ugly prefix {}.{p} (i.e., all the propositions
are false in the first event, and only p is true in the second event), after which no verdict
can be given. We consider it to be weakly monitorable. A priori, we can expect both
a positive or a negative verdict: if p holds in the first event, then a positive verdict is
given; if q holds before p, then a negative verdict is given. Algorithm 3 can identify the
fact that this property is both non-monitorable but is not a zero monitoring information
property.

This calls for using Algorithm 2 rather than Algorithm 1 to perform the runtime
verification. Suppose now that the first event is {q}. Since p does not hold in the first
event, we still have to satisfy the right disjunct (¬q U (p∧23r)). Algorithm 2 can
inform that from now on, one can expect only a negative verdict. If the next event is {},
Algorithm 2 will inform that no further verdict can be given, hence monitoring can be
aborted.

5 Conclusion

Temporal specification is often focused on infinite execution sequences. This abstracts
the idea that the correctness requirements for a system should not depend on its bounded
execution. Although model checking is capable of checking such properties for finite
state systems, one can never exhaustively test an infinite execution. Runtime verification
offers an alternative approach to model checking. It can be applied directly to the system
itself, and it can help with testing the system when its state space is prohibitively high.
On the other hand, runtime verification is limited to observing at any point only a finite
portion of the execution.

The notion of monitorability identifies the kinds of verdicts that one can obtain from
observing finite prefixes of an execution. Monitorability deals with the ability to obtain
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AFR (safety)

SFR

NFR (liveness)

SFSNFS (morbidity)AFS (guarantee)

Monitorable

Zero monitoring information
Weakly monitorable

Fig. 2: Classification of properties according to monitorability.

a verdict, positive or negative, given a finite prefix of an execution. In particular, non-
monitorability characterizes situations where it may not be worthy anymore to wait for
a verdict. However, we argued that the definition of monitorability needs to be refined,
allowing to monitor properties where a priori there are some useful verdicts that may
be observed, even if after observing some prefix of the execution these verdicts are not
available anymore.

We studied here the connection between monitorability and Lamport’s classification
of properties as safety and liveness. To do that we needed to extend this classification
using the dual classes, guarantee and morbidity, and complete the picture with another
property that we termed quaestio.

We also provided algorithms for checking whether a property is monitorable or not,
whether it belongs to a certain monitorability class, and what kind of verdict (positive or
negative) we can expect after monitoring a certain prefix against a given property. This
is useful to decide whether one should apply runtime verification for a given temporal
property given expected verdicts, and what kind of verdicts one can still obtain after a
given monitored prefix. It also allows to recognize when, during runtime verification,
there is no further interesting information that we can expect, consequently abandoning
the monitoring.
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